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ABSTRACT 

Sharp  lower e s t ima tes  for the  J u n g  cons tan t  J(E) in Banach  lat t ices  E 

sa t i s fy ing an  upper  p -es t ima te  and  a lower q-es t imate  are given. More- 

over, the  min ima l  value of J(E) with  respect  to equivalent  renormings  of 

E is ca lcula ted  in E = Lp,q for finite p and  q, as well as in more  general  

spaces  E.  Finally, a nontr ivial  e s t ima te  for the  radius  rLp,oo (A) is ob- 

t a ined  for A being a bounded  sequence of disjointly suppor t ed  funct ions  

in Lp,oo. 

Given a bounded set A in a Banach space E, let 

d E ( A )  = sup I Ix -  YlI, r E ( A )  = inf sup ]i x -  yiI 
x,yEA yEE xEA 
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denote the diameter and the radius, respectively, of A in E. The number 

J(E) = sup{2rE(A) :  A C E, dE(A) <_ 1} 

is called the J u n g  c o n s t a n t  of E. (In the Russian literature, e.g. [19, 23], the 

number �89 is called Jung constant.) The study of this and related constants 

was initiated by Jung [12] almost 100 years ago and is still of interest in various 

fields of Banach space geometry and fixed point theory. 

It is clear that 1 <_ J(E) < 2 for any space E. Moreover, J(E) = 1 if and only 

if E is a so-called P l - space  [6]; in particular, J(L~) = J(l~) = 1. 
By classical results [4], 

J(l ) =  /n2+1. 
The constant J(l~) was found for some n in [7]. A lower estimate for J(Lp) was 

obtained in [1]. Moreover, it was proved in [2, 19] that 

J(LB) = J(lp) = max {21/p,21/p'} (1 < p < co). 

(Here and throughout in the sequel we write pl _- p / ( p _  1) for 1 < p < co 

and 1 r = co.) Finally, some estimates for the Jung constant for spaces with a 

symmetric basis were found in [10], and for Orlicz spaces in [22]. The survey [18] 

is dedicated to some geometric characteristics related to the Jung constant, while 

the recent survey [8] discusses interesting connections with fixed point theory for 

nonexpansive maps. 

As a mat ter  of fact, computing the exact value of the Jung constant in a 

specific Banach space is a highly nontrivial problem. Some results about Jung 

constants in rearrangement invariant spaces (see below) were announced in [11] 

and proved in [23]. In this paper we give sharp lower estimates for the Jung 

constant in the class of Banach lattices satisfying an upper p-estimate and a 

lower q-estimate for some p, q E [1, co) (Theorem 1 and Corollary 1). Moreover, 

we compute the minimal value of J(Lp,q) with respect to equivalent renormings 

of Lp,q in case q < co (Theorem 2), as well as in some more general spaces 

(Theorem 3). Explicit formulas or estimates for this minimal value are given for 

general reflexive spaces (Corollary 2), for so-called r-convexifications (Corollary 

3), for reflexive Orlicz spaces (Corollary 4), and for nontrivial intersections of 

Lebesgue spaces (Corollary 5). The calculation of the Jung constant J(Lp,~) is 

an open problem. However, we obtain a nontrivial estimate for rLp,oo (A) if A is 

a bounded sequence of disjointly supported functions in Lp,~ (Theorem 4). This 

statement was announced without proof in [11]. 
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Let us present the necessary definitions. Given 1 < p <__ co, we say that  a 

Banach lattice E satisfies an u p p e r  p - e s t i m a t e  if there exists a constant C > 0 

such that ,  for every integer n and every choice of disjointly supported elements 

X l , X 2 , . . .  , X  n in E,  we have 

(1) x~ _< c IIz~ll p , 
i=1 

with obvious modifications for p = co. Likewise, a lower  q - e s t i m a t e  (1 < q < 

co) has the form 

(2) ~ x i  > ~ IIx~ll q 
i=l  

for some constant c > 0. A Banach lattice E is called p - c o n v e x  if there exists 

a constant C > 0 such that,  for every integer n and every choice of elements 

x l , x 2 , . . .  ,xn  in E,  we have 

Similarly, we call E q -concave  (1 < q < co) if 

for some constant c > O. 

Given a pair of Banach function spaces (E, F) over the same domain, the 

C a l d e r d n  c o n s t r u c t i o n  [E, F]o (0 < 0 < 1) is, by definition, the set of all 

measurable functions for which the expression 

IIxlItE,F1o = inf sup Ix(t)[ 
tI~IIE,II~IIF_<I ~ lu( t ) l l -~  ~ 

is finite. 

Recall that  a Banach space E of measurable functions on [0, 1] with the 

Lebesgue measure is called r e a r r a n g e m e n t  i n v a r i a n t  (r.i.) or s y m m e t r i c  if 

x* < y*, y E E implies x E E and Ilzll <__ IIyll; here x* denotes the decreas- 

ing rearrangement  of Ixl. Following [15] we shall assume throughout that  E is 

separable or isometric to a conjugate space. 
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If two r.i. spaces coincide as sets, then their norms are equivalent. It is evi- 

dent that  the Jung constant is not stable with respect to equivalent renormings. 

Therefore it seems interesting to consider the characteristic 

Jo(E) = inf J(E) ,  

where the infimum is taken over all equivalent r.i. norms on E. In [23] it was 

proved that  Jo(Lp) = J(LB) for every p E (1, co). 

The following two examples which both generalize the Lebesgue space Lp will 

be useful in what follows. Given 1 < p < oc and 1 <: q _< ec, the L o r e n t z  s p a c e  

Lp,q consists of all measurable functions for which the expression 

x*(t)tl/p] q for q < oc 
Ilxl lLp,q = 

sup x*(t)tWP for q ---- oc 
O<t_<l 

is finite. This expression is a norm if q _< p, and a quasinorm if q > p. In the 

second case, Ilxllp,q is equivalent to a norm. Of course, Lp,p is isomorphic to Lp, 

since the map x ~ x* is an Lp-isometry. 

The other example is the Orl icz  s p a c e  LM which consists of all measurable 

functions x for which the (Luxemburg) norm 

IlXlJLM = inf{k : k > 0, M[x(s)/k] ds <_ 1} 

is finite. Here M: R --~ R is a given Young function [13, 21]; the special choice 

M(u) = lul p gives, of course, again the Lebesgue space Lv. 

All definitions and results about Banach lattices and r.i. spaces mentioned 

above may be found, together with numerous examples, in the monographs [3, 

14, 15]. 

Before stat ing our first theorem we have to prove some auxiliary results. 

LEMMA 1: Let aij ( i , j  = 1 ,2 , . . . )  be a symmetric bounded non-negative 

sequence with aii = O, and let e > O. Then there exists a strictly increasing 

sequence {ki} in N such that 

Proo~ Put  

sup ak~,k~ ~ inf ak2 - k-  + e. 
i , j E N  - -  i E N  * - ~ '  ~* 

")'= inf sup a~j. 
t e n  i , j E l  I I 1 - ~  



Vol. 116, 2000 J U N G  C O N S T A N T  IN B A N A C H  L A T T I C E S  175 

We can find a set I1 C N, ]111 = co, for which 

E 
~/ < s u p  a i j  < '7 + 

-- i , jEI1 2" 

Then, for every J C 11, IJI = co, we have 

s 
(5) "r < sup a~j < 3' + 

-- i , j E J  -2" 

Choose a pair kl, ks E 11 such that  kl < k2 and 

c c 

Applying (5) to the set 12 -- I1\{kl ,  ks}, we find k4 ~" k3 > ks such that  

E C 
~ / - ~  <ak3,k4 < q ' + ~ .  

Continuing this way, we obtain a strictly increasing sequence {ki} such that 

c s 

for every i E N. Consequently, 

supak~,k3 < sup aid < ' ~ +  < i n f a k 2 . . k ~ . + r  
i , jEN -- i , jEI1 2 iEN ~-J., z~  

as claimed. | 

Consider the Walsh matrices 

W 0 --~ (1) ,  W n  : W n - - 1  - W n - 1  
(n = 1,2, . . . ) .  

LEMMA 2: For n E N, let {Yk} (k = 1 , 2 , . . . , 2  '~) be a sequence of disjointly 

supported elements of a Banach lattice E, and put 

zi = E Wikyk (i = 1, 2 , . . . ,  2n), 
k----1 

where {wik} ---- Wn. I r E  does not contain co, then the set Bn = { z l , . . .  ,z2~} 

satis/ies 

rE(B.)  = IlYs + Y~ + " "  + Y2olI. 

Proof: For i - -  1, 2 , . . .  ,2n we have ] [z i -  Yl[[ = IlYs + Y3 + " "  + Y2"ll, hence 

rF(B. )  <_ IlY2 +Y~ + " "  + Y2oll. 
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Suppose  t ha t  

rE(Bn)  < Ily2 ~-y3 J r . . .  + y2nll. 

Then  there  exists z E E such tha t  

IIz~- zll < Ily2 

for i = 1, 2 , . . . ,  2 n. Let Pi denote the 

corresponding to Yi (i = 1, 2 , . . . ,  2n). 

m a y  suppose  t ha t  P1 z = Yl. It  is clear 

= E w , k y ~ - z  > IIz~ z]] 
k = l  

for i = 1 , 2 , . . . , 2  n. From 

we conclude t ha t  

+ y 3  + + y ~ o l l  

band  project ion (see Section 1.b of [15]) 

Since Plz i  = Yl for i = 1, 2 , . . . ,  2 n, we 

tha t  IIw~lPx + ' "  + wi2nP2=]l = 1, hence 

2 n 2 "  WikPkZ 

k=2 

2" 2 '~ 2 '~ 2 n 

i=1  k = 2  k = 2  i = 1  

2 '~ = Yk -- wikPkZ 
k = 2  i----1 \ k = 2  

- -  i - - - - 1  

This  contradic t ion proves our assertion. II 

We remark  t ha t  a somewhat  weaker form of L e m m a  2 was proved in [23]. 

Let  E be a Banach  lattice. Following B. Maurey  [17], for n 6 N we set 

V~(E)  = inf x/ : IIx~ll -- 1; xi i xj = 0 f o r  i # j . 

Maurey  has  proved tha t  ei ther V~(E) = 1 for each n or 

(6) lim V~(E)  = oo. 
n---~ o o  

I t  is known (see Proposi t ions  1.f.7 and 1.f.12 of [15]) t ha t  (6) is equivalent  to the 

q-concavi ty of E for some q < cr this is in tu rn  equivalent  to the  fact tha t  E 

satisfies a lower q-es t imate  for some q < oo. We also set 

l im ~ = Q(E) .  
n-- - I .oo  
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Note that  always 1 < Q(E) <_ 2.  

THEOREM 1: Suppose that E is a Banach lattice which does not contain a sub- 

space isomorphic to co. Then for any infinite sequence B = {bi} of disjointly 

supported elements of E we have 

(7) rE(B) > lim IIbnll. 
r~-.-+ ~ 

If {Yi} is a sequence of normalized disjointly supported elements of E one has 

2 ~ 
_ _  . l / n  

(8) J(E) >_ n-,~lim Z y i  >_ Q(E). 
i= l  

Moreover, if  {xi } is a sequence of normalized disjointly supported elements of E,  

then for each n there exists an In C N with II~1 = 2" such that 

_ _  - 1 / ~ .  
(9) J(E) > 21i2~ E xj 

j E I , ~  

Finally, we have in fact J(E) >_ v~. 

Proof." Assume that  rE(B) = r < k = IimtlbnII. For 0 < c < (k - r)/2 there 

exists c~ such that  Ilbn - cell < k - 2s for all n C N. Since E does not contain co, 

there exists a band projection of cE on bn which we denote by zn. We have then 

IIb ll < IIb  - z ll + I1 .11 < l ib .  - cell + I Iz . I I  < k - 2s  + IIz,dl,  

i.e. IIz, II > Ilb~ll-k+2s. Choose a subsequence {nj} in N such that ]lbn~ If > k - s ,  

hence I]z~[] > s for j E N. Then we have 

m 

j = l  Z n J  - -  S 

for every m E N, which means that  the sequence I[z~ []-tz,~j is equivalent to the 

standard basis of co. This contradiction proves (7). 

Let us now prove (8). First of all, we claim that  J(E) > 1. In fact, if J(E) = 1, 

then E is a Pt space which implies that it is isometric to C(K) with K being 

some extremely disconnected set. Because E is infinite dimensional, this implies 

that  E contains co, contradicting our hypothesis. Thus, we have proved that  

J(E) > 1. 

To prove (8), we use the notation of Lemma 2. Since 

# { k  : 1 < k < 2 ~, wik = wjk} = # { k  : 1 < k < 2 n, wik = -wjk}  = 2 n-1 
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for every choice of i , j  E {1,2 , . . .  ,2 ~} with i ~ j ,  we have 

dE(Bn)=2max{  E y k  : , 1 , = 2 ' ~ - 1 } ,  
k E I  

where the maximum runs over all index sets I C {1, 2 , . . . ,  2 ~} with precisely 

2 "-1 elements. By Lemma 2, we may choose such an index set I ,  with 

2 n 

ZYk. 
i=1 k 6 I , ,  

Iterating this inequality we get 

2 n ,~-1 J'~(E)- 1 2J'~(E) 
(10) E Y i  _ < 2 E J k ( E ) = 2  J ( E ) -  I <- J ( E ) ~  

i = l  k = O  

which implies (8). 

Finally, to prove (9) fix E > 0 and set Ao = {x~}. Applying Lemma 1 to the 

sequence aij -- ]]x~ - x j l  ] we see that there exists a subsequence A1 = {u (1) } of 
A0, where u (1) = x 0), with the property that 

dE(A,) <_ inf [[x~)_l - x(~[ l[ + ~ = innf [lv(~l)ll + e, 

where v (1) ~(1) ~(1) Putting B1 = {v(1)}, we find a subsequence A2 = a ' 2 n - - 1  - -  " ~ 2 n "  = 

{u~ )} of B1 with the property that 

dE(A2) < inf ]]u~_ 1 - u ~ l l  + ~ = inf ]lv(2)]] + e 

where v(2) = ~2n-1~ (2) - u(2n ). For general s 6 1~ we construct As = {u(n s) } and 

Bs = {v (s) } in the same way and obtain 

dE(As) <_ inf IIv(S)ll +E. 

Now, the inclusion As+l C_ Bs implies that 

inf ]tv(S)ll~ -< inf ]tu(S+l)[t ~ ,~-.o~lim II/t(s{-1) H _~ rE(As+l); 

therefore we have dE(As) <_ rE(As+l) + ~ and, since rE(K) <_ �89 for 
any bounded K c E, 

n n - 1  k 

k = O  
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In the last term we can make c tend to zero, while in the other term the diameter 

dE(An+l) can be expressed in the form 

dE(An+l)-=sup ~ X j l  , 
jEI 

where the supremum is taken over all index sets I with 2 '~ elements. From this 

we easily deduce (9). 

To prove the last assertion, we can take ][xj[[ = 1 in (9) and use the set I = I (~) 

with [I[ = 2 n also in (8). Then we choose a subsequence {nj} such that 

lira Z xj 1 /~=  lim ~ xj 1/n~ = Q ' ( E ) .  
n--+ oo i--~ c<~ 

jEI(~) jEI('~) 

Thus, J(E) >_ max{Q'(E),  2/Q'(E)} > v~ as claimed. | 

We point out that the estimate J(E) > v~  obtained above is not a consequence 

of Dvoretsky's theorem and the known equality 

J(12) = sup J(/~) = v/2, 
n 

because in the definition of rE(A) the infimum is taken over E, not A. Indeed, it 

is not true that  J(F) <_ J(E) if F is a subspace of E. For example, J(l~) = 1, 
but J(co) = 2. Finally, the example J(L~) = 1 shows that the assumption that 

E does not contain co cannot be dropped in Theorem 1. 

COROLLARY 1: If E satisfies a lower q-estimate (1 <_ q < oo) then 

(11) J(E) >__ 21/q. 

If E does not contain a subspace isomorphic to co and satisfies an upper 
p-estimate (1 <_ p < oo) then 

(12) J(E) > 21-1/p. 

Finally, suppose that there exists a sequence of dis jointly supported normalized 
elements of E which is equivalent to the unit vectors of lq. Then the lower 
estimate 

(13) J(E) >_ max {21/q', 21/q } 

holds. 

We point out that  the estimates (11) and (12) are sharp because they turn into 

equalities for Lp-spaces. Note that the inequality (13) means, in particular, that 

J(E) >_ J(lq). 
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We also remark that the assumption on upper p-estimates and lower 

q-estimates in Corollary 1 (and in similar statements which follow) may be 

weakened. For instance, one may replace the constant C in (1) by (log n) S for 

some s > 0, and the constant c in (2) by (log n) -t  for some t > 0. 

Corollary 1 may be applied to compute Jo(Lp,q) as we shall show now. 

THEOREM 2: Let 1 <: p <: co and 1 _~ q < co. Then the equality 

(14) Jo(Lp,q) = max{2 l/p, 2 lip' , 2 Uq, 2 Uq' } 

holds. 

Proof." It is well known that Lp,q satisfies a lower s-estimate with s = max {p, q}. 

The sequence of functions 2k/Px(2-k2-k+l)(t ) (k = 1, 2 , . . . )  generates in Lp,q a 
subspace which is isomorphic to lq. For q _< p, this statement is contained in [9]; 

however, it is true also for p < q < c~, and the proof is similar. From Corollary 

1 we conclude that  

Jo(Lp,q) > max {2 l/q, 21/q'}. 

On the other hand, in [23] it has been proved that 

max {2 l/p, 21/p' } ~ Jo (Lp,q) <_ max {2 Up, 21/p', 2 l/q, 21/q'}. 

Combining these inequalities we arrive at (14). | 

Suppose now that  E is a p-convex and q-concave r.i. space. It is clear that  

this does not yet imply a nontrivial upper estimate for the Jung constant J(E). 
However, the constant Jo(E) may then be computed explicitly, as we shall show 

now. To this end, let 

p(E) = sup{p : 1 ~ p < co, E is a p-convex lattice} 

and 

q(E) = inf{q : 1 < q < co, E is a q-concave lattice}. 

By Theorem 1.f.7 of [15], p(E) coincides with the supremum of all p such that E 

satisfies an upper p-estimate, and q(E) coincides with the infimum of all q such 

that  E satisfies a lower q-estimate. 

THEOREM 3: Suppose that E is a r.i. space which does not contain a subspace 
isomorphic to Co. Then the equality 

(15) Jo(E) = max {21/p(E), 2 Uq'(E) } 
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holds. 

Proof: Since the estimate Jo(E) _< 2 is trivial, we may assume in the first part 

of the proof that  E is p-convex for some p > 1 and q-concave for some q < oc. 

Put  0 = 2 min {1/p',  1/q}. By Pisier's theorem [20], there exists a Banach lattice 

F such that  the spaces E and [F, L2]o coincide up to equivalence. (Spaces E with 

this property are called 0-Hi lber t  spaces.) The construction of F given in [20] 

shows that  F is a r.i. space, and hence IF, L2]o is r.i., too. Applying the results 

of [23] we get the estimate 

J([F, L2]0) _< 21-~ 

Consequently, Jo(E) <_ max{2 l/p, 21/q'}, and thus 

Jo(E) < inf{max{2UP,2Uq'}: 1 <_ p < p(E), q(E) < q < oc} 

= max{21/P(E), 21/q'(E)}. 

Let us now prove the inverse inequality. Given r > p(E), we may find an 

increasing sequence of integers {nj} and a sequence of disjointly supported 

normalized elements zj,i C E (j = 1, 2 , . . .  ; i = 1, 2 , . . . ,  nj) such that 

(16) l iZ j , l+Z j , 2+ ' "+z j , n j [ l>_nJ / r  (j = l, 2, . . .). 

To see this, assume the contrary. Then the estimate 

(17) E x i  < III 1/r 
iEI 

is true for every finite index set I C N and every sequence of disjointly supported 

normalized elements xi E E. Consider the Lorentz sequence space lr,1 endowed 

with the norm 

Ilal[z~,~ = [ l ( a l , a 2 , . . . ) l l z . , 1  = 2.-.,x--" ak(t~*"l/~ - (k - 1)l/r), 
k=l 

where {a~:} denotes the decreasing rearrangement of the sequence {Lakl}- By 
Theorem 2.5.2 of.[14], the estimate (17) implies that  the operator T defined by 

o o  

Ta = E akXk  

k=l 

is bounded from lr,1 into E with [[T[[ _ 1. Now, from Hhlder's inequality it 

follows that  It,1 D l~ for s < r. Choosing, in particular, p(E) < s < r, we 
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conclude that  the operator T is also bounded from l~ into E. But this means 

that  E in fact satisfies an upper s-estimate, contradicting the maximality ofp(E) .  

This contradiction shows that  (16) is true. 

For every j E N there exists an mj  C N such that  2"~ < nj < 2 mj+l. Without  

loss of generality we may assume that  

2 m j  

1 1/r 2m~/r-1.  zj# > 
i = 1  

Using (10) and the estimate J(E) >_ v~ we get 

(18) J(E) >_ lim lim 12m~/r = 2 Up(E). 
r--~p( E) j-~oo 

In this way, we have established the lower estimate Jo(E) >_ 21/p(E). 
Let us prove the second part  of the estimate. Given r < q(E), we claim that  

we can find an increasing sequence of integers nj and a sequence of disjointly 

supported normalized elements Yj,i C E (j = 1, 2 , . . .  ; i = 1, 2 , . . . ,  nj) such that  

n j  

(19) E y j ,  i ~ n~/r (j = 1 ,2 , . . . ) .  
i = 1  

In fact, if this were false we would have 

iEI  

for every finite index set I C N and every sequence of disjointly supported 

normalized elements xi C E. By Theorem 2.5.7 of [14], this implies that,  for 

every finite real sequence a = (al,  a2 , . . . ) ,  

<3O 

E aixi > IlalE,~ = sup II[ 1/~-1 E la, I. 
ICN 

i : 1  - iEI  

Since lr ,~ c Is for s > r we further obtain 

O(3 

> 

i= l  

where c(r, s) is the corresponding imbedding constant. Choosing, in particular, 

r < s < q(E), we conclude that  E in fact satisfies a lower s-estimate, contradict- 

ing the minimality of q(E). This contradiction shows that  (19) is true. 
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Now, taking m j  with 2 mJ ~ n j  ~ 2 m~+l we have 

2mj 
~-~Yj , i  ~ 2(mj+l)/r. 
i : l  

Combining this with (9) we get 

2"~ [ - l / m "  ( ) 21-1/r 
J(E) > 2 lira > 2 lira 2_(~j+1)/~ x / ~  -- j--~ar Yj,i -- g~.oc" ~ ' 

i~1 

hence Jo(E) >> 21/q'(E) ,  which proves (15). | 

It is well known (see e.g. Proposition 1.d.4 of [15]) that the notions of convexity 

and concavity are dual to each other. This leads to the following 

COROLLARY 2: Let E be a reflexive r.i. space. Then the equality 

(20) Jo(E) = Jo(E*) 

holds. 

We point out that,  in general, the numbers Jo(E) and Jo(E*) may be different; 

for example, Jo(L1) -- 2, but J0(L~)  ~ 1. However, according to the best of our 

knowledge this is the only example where the equality (20) fails. 

Let E be a r.i. space and r _~ 1. The space E(r) endowed with the norm 

llxll ( ) = II Ixl 

is called the r - convex i f i c a t i on  of E (see e.g. w of [15]). It is easy to check 

that p(E(r)) = rp(E) and q(E(r)) = rq(E). This simple observation allows us 

to derive from Theorem 3 the following 

COROLLARY 3: Suppose that E does not contain a subspace isomorphic to co, 
and let r > 1. Then the equality 

Jo(E(r)) = max {2 Urp(E), 21-1/rq(E) } 

holds. In particular, Jo(E(r)) < 2 if E is q-concave for some q < co. 

As mentioned above, the lower estimate Jo(E) >_ x/~ holds for every r.i. space 

E r L ~ .  Moreover, in [23] it was proved that,  among all r.i. spaces E satisfying 

a lower q-estimate for some q < oc, the space L2 is the only space for which 

J(E) = v/2. However, this is not true if we replace the constant J(E) by the 

constant Jo(E). 
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For example, let E = LM~ be the Orlicz space generated by the Young function 

M~(u) = u2[log(l+lu])] a for some & > 0. Of course, LMo = L2, and LM~ ~ LM, 
for & r #. A straightforward calculation shows that p(LM~) = q(LM~) = 2 for 

every ,~ > 0, hence Jo (LM~) ~ v~. 
To illustrate the above results, we give some further examples. First, we point 

out that  it is impossible to obtain a nontrivial upper estimate for the constants 

J(E) and Jo(E) in the class of reflexive r.i. spaces. To see this, consider the 

space F of all measurable functions for which the norm 

(/o I Ilxllf = x*(t)2t(l~ -il + 1)2] 

is finite. By construction, F is the 2-convexification of the Lorentz space E 

defined by the norm 

fo ~ dt I]Xl]E = x*(t) t(log ~ + 1) 2. 

By [16], F is reflexive. Since 

lim 11~r _ lim v/l~ + 1) 
IIx<o,,>llF . ~o  , / l o g ( 1  + 1) 

v z~ 

- 1 ,  

from what has been proved in [23] we conclude that Jo(F) -- J(F) = 2. 
However, if we study the problem of finding nontrivial upper estimates within 

the class of Orlicz spaces, Theorem 3 gives the following 

COROLLARY 4: f iLM is a reflexive Orlicz space, then Jo(LM) < 2. 

In fact, Proposition 2.b.5 of [15] implies that p(LM) > 1 and q(LM) < oc. 
Applying Theorem 3 above the assertion follows. 

Recall that  the reflexivity of an Orlicz space LM is equivalent to the fact that 

both the Young function M and its conjugate Young function M* (see e.g. [13, 

21]) satisfy a A2-estimate. 

Observe that  the constant Jo(LM) in Corollary 4 must not be replaced by 

the Jung constant J(LM). For example, choose M(u) = max{2fut ,u  2} and 

A = {rl, r2, r3 , . . .} ,  where r,~(t) = sign sin2nTrt are the Rademacher functions. 

Then 

rLM(A) = dLM(A) = I]rllILM = 2, 

hence J(LM) = 2. On the other hand, Jo(M) = v/2, because LM = L2 up to 

equivalence. We mention the article [5], where a similar problem was studied. 
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Here is yet another example. Let 1 < p ~ q < co, and consider the space E = 

Lp N Lq over (0, co) equipped with the n o r m  ] ]XI[LpNL q = max{ilxliL~ , ]lxliLq}. 
It is clear that  Lp M Lq is a p-convex and q-concave Banach lattice. Since the 

finiteness of the underlying measure is not essential in Theorem 3, we arrive at 

the following 

COROLLARY 5: Let 1 < p < q < co. Then the equality 

(21) J0(Lp M Lq) = max {2 l/p, 21/q' } 

holds. 

Let us return to Theorem 2 which provides an explicit formula for Jo(Lp,q) in 

case 1 < p < co and 1 _< q < co. Unfortunately, neither Corollary 1 nor Theorem 

3 applies to the case q = co, since the space Lp,~ contains a subspace isomorphic 

to co. In the next theorem, however, we give a partial result in this direction. 

THEOREM 4: Let 1 < p < co, and let A = { X l , X 2 , . . . } ,  where xi is a disjointly 
supported sequence of functions in Lp,cr Then there exists a constant c C (1, 1) 

depending only on p such that 

rL~.~(A) <_ cdLp,~(A). 

Proo~ Without loss of generality we may assume that  the supports of xi are 

disjoint intervals (a~, b~), x~ is a decreasing positive function on (a~, b~), and 

(22) dLp,~(A) < 1. 

For i = 1 ,2 , . . . ,  we put 

ui(t) = I min{xi(t), (2( t -a i ) )  -1/p} if t �9 (ai,b~), 

( 0 if t ~ (ai,bi), 

and vi = xi - ui. Given T > 0, the set of all i �9 N for which 

(23) mes {t :  xi(t) > T} ~. 1T-P 

contains at most one element. Indeed, if (23) is valid for k, l �9 N, k r l, then 

]lxk-- xtilL,.~ >_r(mes{t: xk(t) > ~ ' } + m e s { t :  xl(t) >_T}) - p >  1, 

contradicting our assumption (22). We conclude that,  for fixed t > 0, the set 

{i : x*(t) > (2t) -Up} contains at most one element. Therefore, the two functions 

oo 

v(t) = E v i ( t ) ,  w(t) = sup max{x; (t) - (2t)-i/P,O} 
i = 1  i E N  
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are equimeasurable. Since x*(t) <_ t -1/v for every t > 0 and i = 1 ,2 , . . . ,  we have 

v*(t) <_ (1 - 2-1/p)t  -1/p. For every j e N, the functions ~j(t) = v(t) - vj(t)  and 

u s (t) are disjointly supported. Consequently, 

mes {t :  ~j(t) + us(t ) > 7} <_ ((1 -- 2--1/P) p -1- �89 -p  

for each r > 0. This means that 

116 + ujllL.,~ < ((1 - 2-1/P) p + �89 

hence itxj - VllLp.~o = il~j + UjlILp,~o < C for every j E N, where 

c =  c(p) = ( ( 1 -  2-1/P) p -[- 1) lip 

1 It is evident that 5 < c(p) < 1 for every p C (1,oe), and thus everything is 

proved. | 
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